
A Poker Game Description Language

*João Castro Correia, *Luís Filipe Teófilo, Henrique Lopes Cardoso, Luís Paulo Reis
LIACC – Artificial Intelligence and Computer Science Lab

University of Porto
Porto, Portugal

*ei08128@fe.up.pt, *luis.teofilo@fe.up.pt, hlc@fe.up.pt, lpreis@dsi.uminho.pt

Abstract—During the last decade, Computer Poker has become
the preferred test-bed for validating developments on the
extensive-form game and multi-agent systems research
domains. Because Poker is a game with hundreds of variants
differing from each other by their betting structure, number of
cards in the deck or winning conditions, numerous agents have
been created for several different variants of the game.
However, there is not a single unified description model that
allows for those agents to be tested across different Poker
variants inexpensively. For this reason, we introduce the Poker
Game Description Language (PGDL), which, unlike other
incomplete information GDL’s, is uniquely focused on Poker
agent development and testing. PGDL is integrated into a
playable system which not only makes available a basic Agent
Development API in Prolog, but also provides a simple in-built
agent which can adapt to user-defined rules. In addition, this
framework has a simple GUI which both basic and advanced
test subjects demonstrated to be adequate and easy-to-use
when defining new PGDL instances. We believe that despite
the existence of more generic general game playing systems,
the fact that our language natively supplies a shared
infrastructure, common to all Poker variants, renders our
approach very pertinent for Poker agent development. Tests
demonstrated that our language was capable of describing the
most popular Poker variants.

Keywords-computer poker; game description language;
general game playing; poker variant; extensive-form games;
incomplete information games

I. INTRODUCTION

In the past years, Poker has been an object of study and
interest by AI researchers because it represents a completely
different challenge from games such as chess. Games like
chess deal with complete information, i.e., both players have
full information about the current state of the game, making
it possible to define a strategy through a decision tree. In
contrast, Poker is a game of incomplete information where
players only have information about their cards and the
community cards, so it requires the construction of a
probabilistic decision tree based on beliefs about the possible
opponents’ cards. Another challenge of Poker resides in its
stochastic nature, i.e., there is the element of chance. This
factor arises due to the fact that the cards are shuffled and
randomly distributed.

Poker is also an industry with high growth rate that
presents high profitability in the entertainment industry. It is
played by millions of people around the world, both live and
online [1]. It is a game with hundreds of variants, which
differ from each other by betting structure, the number of
cards in the deck, the way the winner is determined, among
others.

However, to the best of our knowledge there is not a
single unified description model that allows for game
playing agents to be tested across different Poker variants
inexpensively. For this reason, we introduce a new Game
Description Language (GDL) for Poker games - Poker Game
Description Language (PGDL), based on XML language.
The goal of a GDL is to describe the state of a game as a
series of facts and the game mechanics as series of logical
rules. GDL’s are typically used by General Game-Playing
Systems (GGPS) as input. GGPS are systems that are
capable of recognizing a formal description of a game and
play the game effectively without human intervention.
PGDL, unlike other incomplete information GDL’s, is
uniquely focused on Poker agent development and testing.
Therefore, PGDL was developed to only identify the key
concepts of Poker games rules in order to facilitate the
definition of known or nonexistent Poker variants by users
with Poker domain knowledge. To support the creation and
assessment of PGDL entities, a general game playing system
was also developed. This system allows users to play the
PGDL described game against basic agents. The
development of PGDL was divided in the following steps:

Identification of Poker base rules with emphasis on
the differences between its variants.
Conceive a XML based language capable of
specifying the identified rule differences.
Construction of a system that recognizes the XML
language (in Prolog) and that is capable of
generating the specified game.
Construction of a platform (PGDL Builder) that
supports the creation of PGDL documents.
Development of a generic agent that can play any
variant described in PGDL.

The rest of the article is organized as followed: Section II
describes the game of Poker with emphasis on the
differences between its variants; Section III describes related
work about general game playing systems and game

*Corresponding authors: João Castro Correia and Luís Filipe Teófilo
This work was supported by FCT – Fundação para a Ciência e a

Tecnologia through the Scholarship with reference SFRH/BD/71598/2010.

2013 IEEE/WIC/ACM International Conferences on Web Intelligence (WI) and Intelligent Agent Technology (IAT)

978-1-4799-2902-3/13 $31.00 © 2013 IEEE

DOI 10.1109/WI-IAT.2013.131

353

description languages as well as Poker specific
developments; Section IV describes the PGDL language with
its composing entities detailed; Section V describes the
system that was developed to support the creation of PGDL
documents, with emphasis on implementation details;
Section 6 describes the results of this paper by validating the
system in-built agents, the graphical user interface and the
creation of PGDL instances; Section 7 presents the articles
main conclusions and pointers for future research.

II. POKER

Poker is a card and betting game played by two or more
players, without cooperation, i.e., each player plays for
himself and against all others. Regardless of the played
variant, the goal of Poker is always to win as much cash as
possible and not to win a particular game. Due to its
stochastic nature, it is impossible to mathematically ensure
victory in a particular set of games. For this reason, a certain
player is good when he or she manages to maximize profit
when he or she is lucky and minimize prejudice when he or
she is unlucky.

In Poker each player has to form a set of cards as
valuable as possible – the hand of the player. Combinations
that are less common are especially more valuable than
regular combinations. Each player bets that his/her hand is
stronger than the opponents’ hands. Bets are placed in the
pot and, in the end, the player with the strongest hand wins.
However, if all players except one forfeit the game by
folding, the last standing player wins the pot the game.

A. Hand Ranking
A Poker hand is a set of five cards that expresses the

player’s score. Being Δ the set of all cards in the deck, Φi the
set of private cards of a particular player i and Ω the set of
shared cards so that Φi Ω = and Φi Φj for any players
i and j. Thus, the score function can be score : [Δ]5→ℕ. For
a particular player i, the hand is the union of the pocket cards
and the community cards (Φi ⋃ Ω). Thus, the player’s score
is given by the rank function, as follows:

Rank(Φi, Ω) = max({score(x) : x ∈ [Φi ⋃ Ω]5 : })

The possible hand scores are (from highest to the lowest
score): Straight Flush, Four of a Kind, Full House, Flush,
Straight, Three of a Kind, Two Pairs, One Pair and High
Card. Examples of card combinations for each hand are
presented on Table I.

TABLE I. POKER HAND RANKS WITH EXAMPLES

Hand Name Example of card set
Straight Flush 8♠ 7♠ 6♠ 5♠ 4♠
Four of a Kind A♣ A♦ A♥ A♠ K♠

Full House Q♣ Q♠ 7♥ 7♠ 7♦
Flush T♥ 8♥ 6♥ 4♥ 2♥

Straight 4♦ 5♥ 6♦ 7♠ 8♠
Three of a Kind T♣ T♦ T♥ Q♣ 3♦

Two pair 7♣ 7♠ 3♠ 3♥ Q♠
One pair 2♠ 2♣ 8♣ 7♣ 3♥

High Card A♥ T♥ 6♦ 4♣ 2♣

B. Poker Variants
Poker is a group of similar games with the same base rule

set. The denomination for a specific set of rules is called
variant. The variants of Poker can be divided in 3 groups:

Draw Poker – each player receives a set of private
cards that only he/she can see and can improve the
hand by card replacement. This group of games is
usually played by casual players. Examples of Poker
games that are part of this group are Five-Card
Draw, Badugi and Kansas City Lowball;
Stud Poker – each player receives a set of exposed
cards (cards that belong to the player but everybody
at the table can see) and a set of pocket cards that
only the player can see, in multiple betting rounds.
Six-Card Stud, Razz, Eight-or-better high-low stud
are variations of Stud Poker;
Community Card Poker – games in which each
player receives a variable number of private cards to
form an incomplete hand, which is completed by
combining private cards with public shared cards
(exposed to every player). The most popular poker
variant nowadays, Texas Hold'em, belongs to this
group as well as Omaha Hold'em and Manila.

Poker variants rules differ on the following features:
Number of betting rounds – for instance, Texas
Hold'em has 4 betting rounds and Five-card draw
has 3 betting rounds.
Number of private and public cards and the way they
are dealt – in Texas Hold'em 5 public cards are dealt
and each player receives 2 private cards, while in the
Cincinnati 4 community cards are dealt, one before
each round of betting, and each player has 4 private
cards.
Forced antes – some variants force all players to bet
a certain quantity of money the ante before the cards
are dealt.
The betting order – there are variants such as Seven-
card stud in which the first player to act is the one
with the lowest exposed card and variants such as
Omaha Hold'em where the first player is the one to
the left of the big blind.
The maximum number of players.
Scoring – there are high-games in which the highest
hand wins and low-games where the lowest hand
wins. There are also high-low split games, where the
best and the worst hands split the pot.
Deck composition – there are variants that are played
with only a few cards from the deck, such as Manilla
(only cards above 7 with a total of 32 cards).
Existence of wild cards – special cards that can score
as any card (usually Jokers).
Replacing cards – some variants, like Anaconda,
allow players to pass cards between them in various
ways. In other variants, like Badugi, players have the
opportunity to improve their hand by discarding
some cards and obtaining replacements from the
dealer. There are also variants that force players to

354

discard a fixed number of cards, without
replacement.
Betting structure – Another major difference
between the variants of poker is the betting structure.
The structure can be limited, pot-limited and no-
limit. The limit games are the ones in which there is
a fixed value for each bet made by a player. In a pot-
limited game no player can raise more than the size
of the total pot. In these last two structures until
winning the game there can be a limited number of
raises during a round. In no-limit games there are no
limits on bets.

Table II summarizes the main differences of the most
popular and played Poker variants.

TABLE II. DIFFERENCES BETWEEN POKER VARIANTS.

#Rounds Cards #PlayersNumber Shared Exposed Closed Wild
Texas Hold’em

4 52 Yes(5) No 2 No 2 to 9
Omaha Hold’em

4 52 Yes(5) No 4 No 2 to 10
Baseball

4 52 No Yes(4) 3 3/9 2 to 8
Cincinnati

5 52 Yes(5) No 5 No 2 to 9
Five-card draw

2 52 No No 5 No 2 to 6
Anaconda

4 52 No No 7 No 2 to 7
Manilla

5 32 Yes(5) No 2 No 2 to 9
Seven-card stud

6 52 No Yes(4) 3 No 2 to 8

III. RELATED WORK

Nowadays, it appears that information has become an
increasingly valued resource as facilitator of decisions and
processes of knowledge / intelligence in many different
fields [2]. XML is currently a widely used language for
representing information and will be used on this project to
specify the rules of any poker variant. There are already
some languages capable of representing concepts related to
abstract games, such as the language of Zillions of Games
platform, and to Poker games, such as HoldemML and
PokerLang. The first two are also XML based languages.

A. General game playing systems
A General Game Playing System is one that can accept a

formal description of a game and play the game effectively
without human intervention. General game playing is the
design of artificial intelligence programs that can play more
than one game successfully.

Zillions of Games platform is a popular and successful
General Game Playing system for complete information
games. Zillions is capable of playing almost every abstract
board game, two-dimensional, or puzzles. In order to create a
game, Zillions receives as input a file with the specification
of rules written in a specific format, ZFR. After reading the
ZFR file, the platform is able to generate the game and create

intelligent and competent players that are able to play it.
Zillions allows for the creation of multiplayer games, with
either human and/or agents generated by the system [3].

ZFR language can represent most board games and
puzzles by using S-expressions to define all components of
each game [4]. ZFR represents concepts such as: the name of
the game; a description of the game, i.e., a short explanation
of the rules of the game, its history; the names of the players
that will be identified in the game; the order in which the
players play; the definition of the board; the definition of the
game pieces and how they move on the game board; the
initial game; the goal of the game.

B. Game description languages
Game Description Languages describe the state of a

game as a series of facts, and the game mechanics as logical
rules. It’s a set of high-level and rule-based formalisms used
for communicating the rules of arbitrary games to general
game-playing systems, whose challenging task is to learn to
play previously unknown games without human intervention.

1) Gala
Gala is a system that allows the specification and

efficient solution of large imperfect information games. The
system takes a description of a game, analyzes it, and outputs
strategies for the different players. The description of the
game is written in a specification language, also called Gala
[5].

2) Ary
Ary is a program that translates the rules of a game from

the GDL into Prolog, and transmits them to a Prolog
interpreter, that is used to generate legal moves, apply
moves, determine when the game ends and determine the
score for each player. This program won the 2009 and 2010
General Game Playing competition [6].

3) GDL and GDL-II
GDL is one of the most popular GDL’s that is used to

describe complete information games. GDL-II introduced
new features to the language to also allow it to describe
incomplete information games. Stochastic features were also
introduced. This newest version GDL-II can be used to
represent complex Poker games such as Texas Hold’em [7].

C. Poker-specific description languages
Although the above described languages being generic

enough to specify Poker games, they were not specially
designed to do so. For that reason, developing Poker games
in such languages and specially implementing new agents for
them would be difficult given the amount of abstract
concepts present on those languages. Our Poker specific
GDL intends to solve this problem. There are no Poker GDL
available (known to us) but the following Poker domain
languages served as inspiration to our work.

1) HoldemML
HoldemML is a Poker agent development language [8]

that consists of a generic framework for representing game
logs for the Texas Hold'em variant. It is a XML based
language that is used to summarize the events of the game,
presenting advantages such as portability, interoperability,

355

and supporting tools. It represents concepts such as the
players who have participated in the game, the cards each
player has, the bets each player made at various betting
stages and the game’s winner.

2) PokerLang
PokerLang is a high level language of Poker concepts [9]

designed to conceive high-level strategies for Texas Hold’em
Poker agents. PokerLang represents concepts as strategies
that players can use during the game, tactics that comprise
the strategies of the players, conditions that activate a given
strategy, including the number of players that are playing,
the stack of the player or the player's position in the table. It
also represents actions that comprise a tactic that can be set
by the user or can be predefined through the Poker Builder,
which allows users to create game strategies in an assisted
and intuitive way, making this process more streamlined.

D. Other developments in Computer Poker domain
First approaches to build Poker agents were rule-based,

which involves specifying the action that should be taken for
a given information set [10]. The next approaches were
based on simulation techniques like in [11], i.e. generating
random instances in order to obtain a statistical average and
decide the action. These approaches led to the creation of
agents that were able to defeat weak human opponents.

The great breakthrough in Computer Poker research was
the discovery of the Counter Factual Regret Minimization
Algorithm (CFR) in [12]. The CFR algorithm allows for the
computation of a Nash Equilibrium strategy in large games
like Poker through self-play. This could be done before
through linear programming methods (like Simplex) but
CFR is much faster because the processing time is
proportional to the number of information sets instead of to
the number of game states (about 6 orders of magnitude
less). After the implementation of the original CFR, several
variations of this algorithm emerged like CFR-BR [13].

IV. PGDL SPECIFICATION

In this section the structure of PGDL files is described.
The PDGL format is based on XML. The format is enclosed
in a hierarchical description of game rounds. The description
of each game round compromises the flow of the game.
There are also other elements to describe generic rules of the
variant (such as the number of players) or meta-information
(such as the name of the variant). Figure 1 summarizes the
key components of the language by presenting the tree
structure of a PGDL file.

A. Basic configuration
The PokerGame is the root component of PGDL where

it’s detailed the name, the winning determination (High, Low
or Mixed), the ante value and if the game is played with or
without wild.
<PokerGame name=”Leduc” wildCards=”No”
 winningType=”High” ante=”1” />

Every PokerGame node must have a Players child node
where the maximum and minimum number of players is
defined.

<Players minimum=”2” maximum=”4” />

-name
-wildCards
-winningType
-ante

PokerGame

-minimum
-maximum

Players Rounds

-number
-name
-communityCardsNumber
-faceUpCardsDealt
-faceDownCardsDealt
-blinds
-forceBet

Round

-type

BettingStructure BlindStructure

-min
-max

DrawCards

-value
-direction

PassCards

-value

DiscardCards

-order
-firstPlayerBetting

BettingOrder
-id
-name
-position
-value

Blind

-value
-maxNumRaises

Bet

-standardDeck
-jokers

Deck

-id
-name
-value
-suit
-wild

Card

Figure 1. PGDL Specification

B. Deck personalization
Poker games can be played with a standard deck (52

cards without Jokers) or with a partial deck with a given
number of Jokers.
<Deck standardDeck=”Yes” jokers=”0” />

If the game is played with wild cards, any card can be
used as wild (usually Jokers are used as the default wild
card). Our deck definition allows not only using directly a
standard deck but also personalize which cards belong to the
deck, with custom names. This way one can even define
Poker variants with two decks for instance. For each card
one has to indicate the id and name of the card, the suit, it’s
value (any value of a standard card) and if that card is wild.
This representation does not cover variants with dynamic
wild cards.

Bellow the example of deck for Kuhn Poker (one of the
simplest versions of Poker, used mainly for research
purposes).
<Deck standardDeck=”No” jokers=”0”>

<Card id=”k” name=”King” value=”K”
 suit=”h” wild=”No” />

<Card id=”q” name=”Queen” value=”Q”
suit=”h” wild=”No” />

<Card id=”j” name=”Jack” value=”J”
suit=”h” wild=”No” />

</Deck>

C. Round description
The Round element is the most important component of

the PGDL file structure because it is associated with the
game flow. It describes how the rounds will take place
during the game. Each round has a round number (to control
the order of rounds), a name, the number of dealt shared
cards, the number of faced up and faced down cards that

356

each player is dealt, one Boolean to control if the round must
start with a bet and another one to if the round has blinds.
<Round number=”1” name=”Round One”
communityCardsNumber=”1” faceUpCardsDealt=”0”
faceDownCardsDealt=”1” blinds=”yes”
forceBet=”no”>

…
</Round>

Furthermore, each round has sub-components: the
Betting and Blind Structure of that round, the Cards Rules
and the orders of the bets. Each round must have an
individual betting structure defined.

The Betting Structure must be one of the three available
types: Limit, No Limit and Pot Limit. Depending on the
picked type, one has to indicate the maximum number of
raises allowed per player and the bets’ default value.
<BettingStructure type=”noLimit”>
 <Bet value=”1” maxNumRaises=”3” />
</BettingStructure>

Blind Structure only exists if the attribute blinds is
activated (equals to ‘yes’). This element contains a non-
empty set of Blind elements. A Blind is described by a name,
a unique id, the value of the blind and the position of the
player that will post the blind.
<BlindStructure type=”noLimit”>
 <Blind id=”smallBlind” value=”1”

name=”Small Blind” position=”nextDealer”
/>
</BlindStructure>

Card Rules are specified by three different elements:
Draw Cards, Discard Cards and Pass Cards. Draw Cards
indicates the minimum and maximum number of cards that
each player can draw in a round. Discard Cards specifies the
number of cards that each player must discard in that round.
Pass Cards defines the number of cards that each player
must pass and in which direction (clockwise or
counterclockwise).
<DrawCards min=”0” max=”0” />
<PassCards value=”1”

direction=”clockwise” />
<DiscardCards value=”1” />

Betting Order it’s a sub-component of the Round. To
specify it, it’s necessary to indicate in what order that round
will occur (Clockwise or Counterclockwise) and i that the
first player must play that round.
<BettingOrder order=”clockwise”

firstPlayerBetting=”nextDealer” />

V. PGDL SYSTEM IMPLEMENTATION

The PGDL system is a set of applications that
contemplate the following features:

Support the creation of PGDL files through an
intuitive GUI;
Generate the user-defined Poker variants from a
PGDL file or through the GUI;

Allows the user to play the create Poker variant
through a simple 2D game visualizer.

Figure 2 explains the workflow of the PGDL system.
With PGDL Builder the user specifies the rules of a Poker
game. That specification generates a PGDL XML Document
that is validated by the PGDL XML Schema, to determine if
the specification format is valid. After the validation is
succeeded, the PGDL XML Document is then translated to
Prolog file that contains the terms needed to configure a
generic Poker implementation in Prolog. The Prolog
implementation can be extended by a very simple Agent
Development API. Two agents that used the agent
development API are natively included: a Random Agent
that picks a random action and a E[HS] Agent that plays
based on the Expected Hand Strength of the current hand.
After that, the game can be played in a 2D Visualizer by the
user against the generated agents.

PGDL Builder
(C#)

PGDL XML
DocumentGenerates

Prolog
PGDL System

Rule
configuration

Generates

2D Visualizer

Random Agent E[HS] Agent

Agent Development
APIPGDL XML Schema

Validates

Figure 2. PGDL Builder System workflow

During the development of the PGDL system, several
difficulties have emerged. In the following subsections those
problems, their solution as well as implementation details
will be depicted.

A. Game rules configuration
The first problem to solve was to choose the best way to

represent the list of terms in Prolog that specify the rules of a
Poker variant. This set of terms was made to be accessible to
either support the conversion of a PGDL files to Prolog and
to be easily used by the generic Prolog system. Next we
demonstrate an example of game rules configuration for the
variant Leduc Hold’em (a simple variant mainly used for
research purposes).
minPlayers(2).
maxPlayers(2).
stack(15).
name(‘Leduc’).
winningType(high).
wildCards(0).
card(qs,’Queen of Spades’,queen,spades,1,0).
card(js,’Jack of Spades’,jack,spades,2,0).
card(ks,’King of Spades’,king,spades,3,0).
card(qh,’Queen of Hearts’,queen,hearts,4,0).
card(jh,’Jack of Hearts’,jack,hearts,5,0).
card(kh,’King of Hearts’,king,hearts,6,0).
round(1,1,1,0,1,’Pre Flop’).
bettingStructure(1,noLimit,1,3).

357

blind(1,’Small Blind’,1,leftDealer).
blind(1,’Big Blind’,2,twoleftDealer).
bettingOrder(1,clockwise,leftDealer).
passCards(1,1,clockwise).
drawCards(1,1).

A round is a term that is composed of six atoms: number
of round (order), the ante value, the number of faced up
cards, the number of faced down cards, the number of shared
cards and the name of the round.

BettingStructure is a term that has four atoms: the
number of the round where it belongs, the type of betting
structure, the value (that is only used when the structure is
‘limit’) and the maximum number of raises that are allowed
in the corresponding round.

The term for card description is composed of an id, the
name of the card, the value of the card, the suit, an auxiliary
value and a binary value (1 or 0) that indicates if that card is
wild or not.

B. Representing a player state
During a game, the player is expressed as follows:

player(Id, Cards, PlayerType,
 PlayerAvailability, LastBet, Stack).

Id is a unique identifier for the player in the game. Cards
is a list that contains the player’s private cards. PlayerType
indicates if a player is human or an agent (to allow it to be
controlled by the GUI or not). PlayerAvailability indicates if
that player is allowed to bet. The player will not be allowed
to bet if it is in all-in mode or has forfeited the match.
LastBet represents the total amount of cash that the player
has betted during the current round (when a new round starts
this value is set to 0. It is used to check if all player bets are
matched). Stack represents the total amount of remaining
chips of that player, in order to control the value of bets that
the player can make.

C. Representing the game state
The game state is represented by a list that contains a list of
all players, the current value of the pot which is awarded to
the winning player at the end of the game, the number of
raises made so far (to be used in games that limit the number
of raises), a list of shared cards and the position of the dealer.
The last is used to locate the players in the table (relative
positions to the dealer are used).
GameState = [NumberRaises-Pot-Dealer-

 SharedCards,PlayersList]

D. Determining the end of a round
To determine if a round ended, the bet values of all

available players are asserted to be the same as follows:
pass_aux(BetsList):-
max_member(Max, BetsList),
min_member(Min, BetsList),
Max =:= Min.

When this happens, the round ends and the system moves
to the next round. If there are no more rounds left, the winner
of the game is determined.

E. Determining the winner
Another problem faced was the way the winner is

determined. To do this, the player with the best hand must by
chosen. There are already lots of applications to compare
Poker hands efficiently (descried in [14]) but, however, those
are targeted to the most popular variants in which the hands
are composed of at least 5 cards and a maximum of 7 cards.
The fastest known evaluator is TwoPlusTwo Evaluator,
which can evaluate about 15 millions of hands per second
[14]. It takes a poker hand and maps it to a unique integer
rank such that any hand of equal rank is a tie, and any hand
of higher rank wins. TwoPlusTwo was used to calculate the
winner in games that the hands are composed at least by 5
cards (for hands with more than 7 cards, we used the
TwoPlusTwo 5 card lookup table and computed all
combinations C(n,5) of 5 cards to pick the best possible
score). To compute the score of hands that are composed by
maximum of 4 cards, a new evaluator was developed (since
Straights and Flushes are not possible with less than 5). To
do this, we assigned a value to each possible hand based on
the cards that compose that hand. For example, if we have a
hand of 4 cards (C1, C2, C3, C4) and the cards are all
different the way the value of the hand is calculated is:

numEqualValue([C1,C2,C3,C4],HandValue):-
max_member(Max,[C1,C2,C3,C4]),

 min_member(Min,[C1,C2,C3,C4]),
 delete([C1,C2,C3,C4],Max,L),
 delete(L,Min,L2),
 max_member(Max1,L2),
 min_member(Min1,L2),
 HandValue is Max*1000+Max1*100+Min1*10+Min.

F. Dealing with wild cards
Another problem found was how to deal with wild cards

when a player has in his hand wild cards and it’s necessary to
calculate the hand value. In that case the wild cards are
identified and removed from the hand, creating a new hand.
Then, the cards of the new hand are removed from the deck
and with the new deck are generated all the possible
combinations of the number of wild cards presented in the
hand. Each one of those combinations are added to the hand
and is calculated the value of that hand. The hand value is
chosen from all the combinations of hands, according to the
winning type of the game.
retrieveWildHandValue(Hand,WildCards,Value):-
newHand(Hand,WildCards,NewHand),
findall(C,card(C,_,_,_,_,_),Deck),
newDeck(Deck,NewHand,NewDeck),
length(WildCards,NumWC),
length(L,NumWC),
findall(L,comb2(NewDeck,L),AllCombs),
getValue(NewHand,AllCombs,0,Value,_Card).

G. Agent development API
An agent development API is included in the PGDL

system. The agent development API supports information set
abstraction features. The reason behind this is the fact that
most Poker games usually have a very large decision tree

358

which makes it essential to abstract information sets (by
making different cases undistinguishable) to enable agents to
make decisions in reasonable time. There are three types of
abstraction: moves sequence abstraction, information
abstraction (card set abstraction in the case of Poker) and
action abstraction (more useful for No Limit games with
multiple possible raise amounts to choose from).

To implement an agent, one as to write the following
Prolog terms:

abstract_hand(+Hand,-AbstractedHand) – abstracts
the hand of the player (private and shared cards). The
default term is no abstraction (abstract_hand(H,H)).
abstract_history(+History,-AbstractedHistory) –
abstracts the sequence of game actions. Again, the
default term is no abstraction.

play(+AbstractedHand,+AbstractedHistory,
-AbstractedAction) – the actual term that is used to
play. It returns an abstracted action.

translate(+AbstractedAction, -Action) – translates an
abstracted action to an actual action to be executed by
the agent.

The strategy of an agent is then defined as follows:
strategy(PID,SharedCards,History,Action):-
player(PID, PCards, _,_,_,_),
concat(PCards, SharedCards, Hand),
abstract_hand(Hand,AbstractedHand),
abstract_history(History,AbstractedHistory),
play(AbstractedHand,AbstractedHistory,
 AbstractedAction),
translate(AbstractedAction,Action).

H. In-built agents
Two pre-built agents are included in the PGDL system: a

random agent and a E[HS] (expected hand strength) based
agent. The random agent picks a random action for any
information set, avoiding folding (forfeit) when a check
action (free pass) is possible.

The E[HS] agent is based on E[HS] equation. The
Expected Hand Strength is the probability of the current
hand of a given player being the best if the game reaches a
showdown with all remaining players. For a player i against
a giver number of opponents n, the E[HS] is given by:

The implemented agent uses the E[HS] value to choose
the action according to Table III. For each betting structure,
the agent as a fixed probability of following each action.

TABLE III. E[HS] AGENT STRATEGY

E[HS]
Value

Betting Structure
Limit No-Limit

Fold Call Raise Fold Call Raise
10%

Raise
20%

Raise
50%

All-
In

< 30% 100% 0% 0% 100% 0% 0% 0% 0% 0%

30-50% 50% 30% 20% 50% 30% 10% 3% 2% 0%

50-80% 5% 50% 45% 5% 50% 25% 10% 5% 5%

80-100% 1% 19% 80% 1% 19% 20% 15% 15% 30%

I. Graphical User Interface
In order to make it easier and more intuitive for a user to

specify the rules of a poker game, a GUI was developed
using Microsoft C# 4.0 Windows Forms. The interface was
divided in four parts: Game, Rounds, Deck and
Visualization. Four screenshots of each part are respectively
presented on Figure 3.

The first screenshot presents the interface used to specify
the Game’s general rules. In it the user has to indicate the
minimum and maximum number of players that can play the
game, the way the winner is determined, the name of the
game and if the game has dealer or not.

In the second screenshot is represented the interface used
to define the rounds. The user has the possibility to choose
the name of the round, the betting structure, the betting
order, the rules that involve cards, and the blind structure
where he or she can add the blinds that will occur in the
game and the cards dealt. Each round is defined in different
tabs. In each tab it is possible to edit that round. The order of
the rounds is defined by the order of the tabs in the interface.
The rounds can be re-ordered by drag & drop.

To specify the composition of the deck (third screenshot),
the user has either the possibility of choosing to use the
standard deck in a checkbox. If not, the user has to select
each card one by one from the list on the right. The user must
also indicate if the game has wild cards or not. If it has, he or
she has to indicate how many jokers will be used or indicate
if a particular card is wild or not.

Figure 3. PGDL System GUI

359

To create the game the user has to click in the “Create
Game” button. If the specification has errors the user will be
notified. If not, the XML and Prolog file with the
specification of the rules of the game will be created and the
button to play the game in the 2D visualizer will be
available. The 2D visualizer can be seen on the fourth
screenshot in Figure 3.

VI. TESTS AND RESULTS

To validate the PGDL system, several tests were
perfomed. First several popular Poker variants were
implemented to confirm that the PGDL specification was
sufficient to describe them all. Next, we tested the E[HS]
agent against the random agent to assess if it is competent
enough against the most possible basic agent – the random
agent. Finally, we tested the GUI with several users to assess
if the system is user-friendly to implement Poker variants.

The following Poker variants were implemented
successfully with the PGDL specification: No-limit / Limit
Texas Hold’em, Kuhn, Leduc, Cincinnati, Five-card draw,
Anaconda, Manilla and Seven-card stud. In all implemented
variants, the E[HS] agent was capable of beating the Random
agent by a large margin (245.63 in milli-big-blinds/game in
average).

To check if the GUI is user-friendly and intuitive,
usability tests were performed. The test consisted of users
(16 subjects on our tests) implementing two simple variants
of poker, Kuhn Poker (2 times, one with standard deck and
one with 3 card deck) and Leduc Hold’em Poker. All
subjects were able to complete the task with an average time
of 3.69 minutes. By analyzing the results of the tests we
concluded that the time spent by the users doing the test was
very similar, despite the level of knowledge about the Poker
domain (standard deviation of 76 seconds). The learning
curves of our tests can be observed on Figure 4.

Figure 4. Learning curves using PGDL GUI

The biggest problems faced in the GUI usage were
related to the understanding of the Poker specific
nomenclature, even for users that said that they played Poker
regularly. This is due to the fact of most Poker variants being
unknown even for regular Poker players (the most played are
Limit and No Limit versions of Texas Hold’em and Omaha
Hold’em).

VII. CONCLUSIONS

This research presented a generic system for creating
poker variants. We created a XML dialect to represent the
specification of most known Poker variant rules. From that

specification, the developed system can generate a playable
implementation of the game in Prolog. Excluding Omaha
Hold’em (the system does not support that variant winning
conditions), we were able to implement the most popular
Poker variants with our system, proving its usefulness. The
results of tests showed that the interface is user-friendly well
designed and is easy to use because all the users took similar
time to specify the same poker variant. This approach can
enhance not only the easy implementation of any poker
variant but also the creation of new variants. For future work,
we will study the possibility of integrating more in-built
intelligent agents that can compete with human players. For
that, one could implement a more general version of the
Counterfactual Regret Minimization algorithm in order to
generate Nash Equilibrium strategies for the specified variant
(which proved to be quite competitive in scientific agent
competitions such as the ACPC – Annual Computer Poker
Competition).

REFERENCES

[1] D. Billings, A. Davidson, J. Schaeffer, and D. Szafron, “The
challenge of poker,” Artificial Intelligence, vol. 134, no. 1–2, pp.
201–240, 2002.

[2] C. H. Marcondes, “Representação e economia da informação,”
Ciência da Informação, vol. 30, no. 1, pp. 61–70, Apr. 2001.

[3] “Zillions of Games - Unlimited Board Games & Puzzles.” [Online].
Available: http://www.zillions-of-games.com/.

[4] I. P. dos Reis and L. Reis, “Generic Interface for Developing Abstract
Strategy Games,” in 6th Iberian Conference on Information Systems
and Technologies (CISTI), 2011, no. February 2011, pp. 950–953.

[5] D. Koller and A. Pfeffer, “Artificial Intelligence Representations and
solutions for game-theoretic problems,” Artificial Intelligence, vol.
94, pp. 167–215, 1997.

[6] M. Jean and T. Cazenave, “Ary , a general game playing program The
Game Description Language,” in Board Games Studies Colloquium,
2010, pp. 1–9.

[7] M. Thielscher, “A general game description language for incomplete
information games,” in Proceedings of AAAI, 2010, pp. 994–999.

[8] L. F. Teófilo and L. P. Reis, “HoldemML: A framework to generate
No Limit Hold’em Poker agents from human player strategies,” in 6th
Iberian Conference on Information Systems and Technologies (CISTI
2011), 2011, pp. 755–760.

[9] L. Reis, P. Mendes, L. Teófilo, and H. Cardoso, “High-Level
Language to Build Poker Agents,” in Advances in Intelligent Systems
and Computing Volume 206, 2013, no. July, pp. 643–654.

[10] D. Billings, D. Papp, J. Schaeffer, and D. Szafron, “Opponent
modeling in poker,” in Proceedings Of The National Conference On
Artificial Intelligence, 1998, vol. pp, pp. 493–499.

[11] D. Billings, D. Papp, L. Peña, J. Schaeffer, and D. Szafron, “Using
Selective-Sampling Simulations in Poker,” in AAAI Spring
Symposium on Search Techniques for Problem Solving under
Uncertainty and Incomplete Information,, 1999, pp. 13–18.

[12] M. Zinkevich, M. Bowling, and N. Burch, “A new algorithm for
generating equilibria in massive zero-sum games,” in Proceedings of
the Twenty-Second Conference on Artificial Intelligence (AAAI),
2007, pp. 788–793.

[13] M. Johanson, N. Bard, N. Burch, and M. Bowling, “Finding Optimal
Abstract Strategies in Extensive-Form Games,” in Proceedings of the
Twenty-Sixth Conference on Artificial Intelligence (AAAI-12), 2012,
pp. 1371–1379.

[14] L. F. Teófilo, L. P. Reis, and H. L. Cardoso, “Computing Card
Probabilities in Texas Hold’em,” in CISTI’2013 - 8a Conferência
Ibérica de Sistemas e Tecnologias de Informação, 2013, pp. 989–994.

360

